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Existence of Free Energy for Models with Long-Range
Random Hamiltonians
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Classical lattice systems with random Hamiltonians

1 €(x1, X2)p(x1)9(xa)

2x1¢x2 lxl - lead

are considered, where d is the dimension, and e(x;, x2) are independent
random variables for different pairs (x;, x2), Ee(x:, x2) = 0. It is shown
that the free energy for such a system exists with probability 1 and does not
depend on the boundary conditions, provided « > 1/2.

KEY WORDS: Random interactions; random variables; long range; free
energy; Hamiltonian; spin system; partial function.

1. INTRODUCTION

The anomalous magnetic properties of some metallic alloys, the so-called
spin-glasses, are known to be due to the Ruderman—Kittel-Kasuya—Yosida
(RKKY) spin—spin interaction of impurity atoms.® This can be given by the
formula

J(Jx1 — xaep(xr)ep(x2)
where ¢(x;) and ¢(x;) are the spins of impurity atoms, and J(r) =
(kpr %) cos(2kyr), where kjp is the Fermi momentum.

The RKKY interaction is long-ranged and rapidly oscillating. In order
to investigate it we usually consider models with random Hamiltonians, such
as those in which J(|x; — x,|) is assumed to be random and statistically
independent for various pairs x;, x,.‘%® Similarly, a lattice model can be
used with the Hamiltonian

H = 1 Z (xy, X2)p(x)p(x2) (1)

2 X1 # X2 lxl - lead

! L. D. Landau Institute for Theoretical Physics, The Academy of Sciences of the USSR,
Moscow.

573
0022-4715/79/0600-0573%03.00/0 © 1979 Plenum Publishing Corporation



574 K. M. Khanin and Ya. G. Sinai

where e(x;, x,) is random and d is the dimension of the model. The param-
eter o characterizes the power of the long-range interaction. The main
problem we treat here is the existence of the free energy for such systems.
For o > 1 the answer is in the affirmative.®-® In this paper we shall consider
values of « < 1.

In the case of nonrandom Hamiltonians the free energy may not exist
for such systems. For example, in the ferromagnetic case the energy of the
ground state increases more rapidly than the volume. However, in the pres-
ence of random interactions all effective interactions decrease. Consequently,
the free energy exists and is independent of «(x,, x,) with probability 1.

We assume that x € Z¢ and that ¢(x), the spin variable at the point x, -
takes the values + 1. Let V be a finite subset of Z¢. The Hamiltonian H in
the volume ¥ is given by the expression

—_ _1_ (X1, X2)p(1)P(x)
H(‘P(V)) - 2x1%eV [xl _ lead
X1 FXg

where @(V) denotes the spin configuration in ¥, and «(x;, x;) is a set of
independent random variables with a zero mean value defined in the prob-
ability space (Q, o, P). They are assumed to be translation-invariant, i.e.,

e(x1; + x, Xg + X)

has the same distribution for all x € Z%. For a given realization of the random
variables w = {e(xy, X,), X1, X3 € Z°% € Q, the free energy in the volume V is
defined as follows:

Sl = T;—ilog =), E0) = 3 ewl-He()]

oV,
where the summation is taken over all the configurations ¢(¥) in the volume
¥V, and | V| is the cardinality of V.

For the sets ¥ we shall choose parellelepipeds tending to infinity in the
sense of Fisher.® Note that “tending to infinity in the sense of Fisher”
means that, if a;, a;,..., a, are the edges of the parallelepipeds and p is its
diameter, then .

a;/p > const > 0, i=1,.,d as V—w
The main result of this paper is the following theorem.

Theorem. Suppose the following conditions are fulfilled:

I > 1)/2.
Ila. The random variables «(x;, xy) have moments of an arbitrary order,
and there exists a constant b such that for all integers k > 2

IE(ek(xl’ x2))l < %d(xla xz)bk~2'k!, Vxl, Xz € Zd
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where d(x;, x,) is the variance of «(x,, x,), and E(-) is the averaging over the
measure P.

IIb. The variances d(x;, X,) are uniformly bounded by some constants
C; and C, so that

0 < Ci < d(x1, %) < Co

Then, for any extending sequence of parallelepipeds which tends to
infinity in the sense of Fisher, fy, (w) converges to a nonrandom limit with
P-probability 1. The limit is independent of the sequence ¥, and is equal to
the limit of E(fy (w)).

To prove this theorem we use Bernstein’s inequality for probabilities of
large deviations.™® Let »;, i = 1, 2,..., be independent random variables
with the zero mean value satisfying condition Ila of the theorem. Let d; be

the variance of n;, D, = d; +~ + d,. Let 0 < t < V' D,[2b; then

P{i n = 2t\/3;} < exp(—1?)

P{i n € —2t\/E} < exp(—1?)

i=1

2, PROOF FOR LIMITED e(x;, x,)

Now we prove the theorem for limited e(x,, x;). Suppose the random
variables are uniformly bounded, i.e., there exists a constant C > 0 such that
le(xy, x5)| < C with probability 1.

Consider two equal nonoverlapping cubes ¥ and V2 in the lattice Z¢
with edge of size a. Let z* and z2 be the centers of the cubes V'* and V?2,
respectively.

The energy of the interaction between V' and V2 is given by the ex-
pression

Ho o) = 5 S Xutnels)

For given (V) and ¢(V2), H(e(V?Y), (V%)) depends on e(x;, x,) and is a
random variable.

Lemma 1. Let dist(V?1, %) > const-a. Then for any 8, 0 < 8 < 1/2
and for all sufficiently large ¢ we have

Ploe Qi [H(@(V), o(V2)| = a®2*+ 99|zt — 22[%,
at least for one pair ¢(V'?), ¢(V2)}

< eXp( —_— a(l + 15)d) (2)
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Proof of Lemma 7. Let us fix the configurations @(¥*) and ¢(¥2) and
define the random variables
(X1, Xg) = (X1, xz)‘i"(xl)?’(xz)lzl - Zzlad/[xl - lead
Then
1
H@(VD, (V) = = 2, 101, %)
|Z z l x16V1,x06V2

From condition Ila of the theorem it follows that the random variables
n(xy, X,) satisfy the conditions of Bernstein’s inequality with the constant
B(VY, V?) = const-b. Let

DV, V?) = Z dn(xy, Xo)

x16V1,x06V2
where dy(x,, x,) is the variance of n(x,, x,). Obviously, const- a4 < D(V?, V?)
< const-a??. Suppose t = a®2+9[D(VL, V]2, then
t < [D(VY, VO]U2[2B(VY, V2)

for all 0 < 8 < 1/2 and for sufficiently large a. Therefore, from Bernstein’s
inequality we have:

A

The general number of configuration pairs e(¥'1), (V2) is equal to 2/V*1+1721;
hence, the left-hand side of inequality (2) does not exceed 22%°-2 exp(—12) <
exp(—a®*99) for sufficiently large a. The Lemma is proven.

n(xla x2)

x1EV1,x06V2

> a(3/2+6)d} < Zexp(_tZ)

Remark. 1t is not essential that ¥* and 72 be equal cubes. Lemma 1 and
two subsequent Lemmas also hold in the case where V! and V2 are parallele-
pipeds with edges differing by a constant factor. We shall use this remark
below. '

Now we estimate H(p(V'?), o(¥2)) when V! and V? are equal adjacent
cubes. In Lemma 2 the distance between V! and V2 is not stipulated, although
we shall use it in the case in which V! and V2 have a common face.

Lemma 2. There exist y, 7 > 0 such that for all sufficiently large a
P{|H(p(VY), (V)| = a*~79, at least for one pair (V*), p(V?)}
< exp(—a) 3)

Proof of Lemma 2. The proof of Lemma 2 is based on the following
inductive statement. Suppose for some s;, 7; > O that it has been proven for
all sufficiently large a that
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P{{H(p(V*"), p(V?))| > a*, at least for one pair p(V7), o(V2)}
< exp(—a™) 4
Let us fix 8,0 < & < 1/2; then for
Sy = orsnui;l1 max{slu + (1 - u)(l - %), (% — o+ S)u + 0 -w?2 - cc)}
and some 7, > 0 a similar estimate is valid for all sufficiently large a:
P{{H(p(V?"), ¢(V2))| = const-a?, at least for one pair (V1) p(V2)}
< exp(—a'?) e

Now we prove this statement. Subdivide ¥* and V? into smaller cubes with
edge a' of the order of a*, 0 < u < 1. For example, we can take a* = [a],
where [a*] is all of ¢*. The V* and V2 are notto be subdivided evenly into
such cubes. Near the boundary there may appear parallelepipeds with smaller
edges. These are included into the next subdivision. In this way ¥ and V2
are subdivided into cubes with edge @' and parallelepipeds adjacent to the
boundary with edges a;, a* < a;, < 24,1 = 1,..., d. Let us denote the elements
of the subdivisions of V* and V2 by ¥;* and V2. Then,

H(p(VY), (V) = Z H(p(VY), 9(V2)

The number of the adjacent pairs V%, ;2 does not exceed const-(a/at)?~1.
We use the estimate (4) for these parallelepipeds and apply Lemma 1 to the
other pairs ¥}, V,2. We then have

P{at least for one pair (V1) o(V?):

H7, V)] > const-@yse(&) 7+ @yomor S L)

i,7 1=

a\dé-1 a \2d
< const- [(—a—l) exp[ —(a)1] + (;) exp[_(al)(1+0)d]]
Here z;* and z;2 denote the centers of V;* and V;2. Then

1 const ( a )(2-“>d
i,j |Zi1 _ Zj2|ad = (al)ad al

Since a® = [4“], then under the condition of u # 0 we obtain for sufficiently
large a and some 7(x) > O the following:

Pf{at least for one pair o(V?), o(V2): |H(p(V?Y), (V)|

> const- (a[slu +(1—-uxl-1/d)id + a[(3/2 —ax+8u+@-a)l- u)]d)} < exp( — a‘t(u))
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By taking a u that minimizes the expression max{s;u + (1 — w)(1 — 1/d),
(3 — o+ &u + (2 — «)(1 — w)} and noting that this u # 0, we obtain the
inequality (5).

As the first estimate the rough upper bound is taken:

Vo(V), o(V2), |H(g(V?), p(V*)| < const-g®~ 4

Then, by using the inductive statement in a finite number of steps we obtain
the inequality (5) for any s, > max{3 — a + §,1 — 1/d}. If « > 1/2, we can
choose 8 so small that (3 — « + 8) < 1; therefore max{3 — « + §,1 — 1/d}
will be less than unity, which proves Lemma 2.

Lemma 3. Foranyy, > 0and some 7(y;) > 0, P{|H(e(V1))] = a® 14

at least for one p(V1)} < exp(—a®"), for sufficiently large a.
The proof of Lemma 3 is analogous to the proof of Lemma 2 and is not

presented here.
Let W, be a cube with edge 2* on the lattice Z¢. It can be subdivided

into 2¢ cubes with edge 2¢~!. Denote these cubes by Wi_,, * =1, 2,..., 2%
Define the random variable gy, by the equality

1 &
ng =fWk - 2_11, Z fW;.c-.l
i=1

Then the following Lemma holds.

Lemma 4. There exists y,, 7o > 0 such that for sufficiently large k
P{lgw;| = 1/2¥72} < exp(—2+7a) 6)
Proof of Lemma 4

HGR) = 3 HeWi) + 53 HoWWid o) ()

Applying Lemma 2, we have for some y,, 73 > 0

Pfat least for one (W), max|H(p(W}_,), p(Wi_,))| = 2F1-724}
i#j

< exp(—2"7) ®
for sufficiently large k. From (7) and (8) we obtain

1 &
P{ fWk - 5&2 fW;¢_1
i=1

and Lemma 4 is proved.

k(L= vp3d

> —2—} < exp(=2+%)

From Lemma 4 it follows that for sufficiently large &, |E(gw,)| < 2/2"4%,
since | gw,| does not exceed a certain power of the volume of W, with prob-
ability 1. The fyi_,, i = 1,2,..., 2¢ are independent, identically distributed
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random variables; therefore, |Efy, — Efw,_ .| = |Egw,| < 2/2"*. Hence,
there exists a limit Efy, as k — co. Denote this limit by F, F = lim,.,., Efy,.
We shall prove that for an initial sequence of parallelepipeds V,, fy, — F as
n — oo with probability 1.

Consider a squence of subdivisions ¢, of the lattice Z¢ into cubes with
edges 2%, k =1, 2,..., coordinated so that the point 0 € Z¢ is the vertex of
these subdivisions for all k.

Let p, = diam(V,). Choose k(n) to satisfy the condition 2%™ < p,! <
2¥®+1(0 < | < 1. The parameter / depending on « is defined below. Eremy
subdivides V), into cubes with the edge 2“™ and into parallelepipeds of
smaller edges adjacent to the boundary of V,. Similarly, Lemma 2 unites
these parallelepipeds with the neighboring cubes, so that we obtain a sub-
division of ¥, into cubes with edge 2™, which we denote by Wi, i =
L, 2,..., t(n), where t(n) is the number of such cubes, and into parallelepipeds
adjacent to the boundary whose edges are less than 2™ *1 and no less than
24w We denote these elements of the subdivision by W,7, j = 1, 2,..., t'(n),
where ¢'(n) is the number of these parallelepipeds. Then we have

1)) t'(n)

H(p(V,) = Z H@\Wh) + Z H(p(W,7)) + Z H(p(Wiw), o(W, f))

+3 2 HeWi), oWiw) + 5 S, HGTD, oTD)  ©)

i#Fi e

For a sufficiently large p,, when Lemmas 1-3 can be applied to all the elements
of the subdivisions Wi,, W,’, we obtain the following inequality with a
probability exceeding 1 — exp(—p), r3 > 0:

#( an))

3 3 H Wi, 9(Wie) + 5 2 H(@(W), 97

1#:1
3(2~a+0)ldy (2 ~a)1-1 1-1 1-pia
< const-(pﬁ,’ a+6) p;l a) Dd +p§z )dpgL 7> )

t’(n)

> He(W)| <

j=1

const- p(l D(1- lld)dp(1+‘yx)ld

where 8, v, and vy, are defined by Lemmas 1-3 and r, is dependent on $, v,
v,, and

By Lemmas 1 and 3 the parameters § and y can be taken as small as
desired. Therefore, if « > 1/2, by choosing 8, y, and / we find for some
ys > 0 that the following inequality holds with a probability larger than

1 — exp(—pp):
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t(n)

[H@(V2) = 2, H@(Wia)| < const-pil —1o (10)

Let us define the random variable g,:
Hn)

1
& =fv, — ;(—’;)Zlfwt’cm

From (9) and (10) we obtain P{|g,| = const/p?3?} < exp(—p2?). This means
that g, — 0 as n — oo with probability 1. Indeed, p,* > const-n, since the
sequence ¥, is extending and by the Borel-Cantelli Lemma g, — 0 as n — o
with probability 1.

From Lemma 4 and the consequences following from it, we have
Efy, — F as k — oo. For sufficiently large &

P{lgw,| = 1/2772} < exp(—2¥2),  |Egy,| < 2/2¥2 (11)

For an arbitrary 4 > 0 one can choose k, in such a way that ]Efwk0 — Fl<up,
2[2%"2 < uf2, and for all k& > k, the inequalities (11) and the following ones
hold:

E(gw, — ngk)z < 37[27K7s, E(gw, — Egw)* < 3424572 12)

For sufficiently large p,,, such that k(1) > k,, the cubes Wi, are subdivided
into cubes with edge 2¥™-1 — Wi ., i=1,2,..,2%(n), then into cubes
with edge 2¥™-2 — Wi ., o, i = 1,2,..,2%4 and so forth, until a sub-
division into cubes with edge 2% — Wi , i = 1, 2,...,, 294%™ ~k¢(y) occurs.
Write t(n) = t(n)2%™~¥%0~94¢ By applying Lemma 4 we obtain

1 to(n)

fv,, = fwko + gh4r ot Ry + En (13)
to(n) &y

where
tj(n)

& = 7 2 EWhosir  J =12, k(n) — ko

Note that the gy, , ,, 7 = 1, 2,..., #,(n) are independent, identically distributed
random variables.
Foranyg, 0 <g <1

A

Choose j, satisfying the condition

k() = ko

n
8ko+i| =

p k() =Ko
T }s D Pllghl > ng'mY
—-4q i=1

j=1

t(n) = pPt if j<j, and t,(n) < pai*



Free Energy for Models with Long-Range Random Hamiltonians 581

Then

Fe(n) — ko jn—1

> Pllghsdl > ua’ Y = D Plgh el > pg'm}
i=1 i=1

K(u)~kq )
+ > Pllekl > pg’™Y

J=1Jn

Letg = 272, where y, is defined by Lemma 4. From the conditions imposed
on k, it follows that [Egy, , | < ug’~*; therefore

jn-1 jn—1
Z P{ngo+f| > ‘qu~1} < z P{lg£o+1' - Eng0+j[ > _%_quj-l}
i=1 Jj=1

By using Chebychev’s inequality we obtain

Pl gk, +s — E8w,,,,| > tng’ ™}

E(ghy+i — Egwiy. )"
Gug’ 1)t

o[y e ) )

_ 3t](n)[t.’l(n) - 1][E(ngo+j - Engo +j)2]2 + tj'(n)E(ngO-)»j - ngko -i»_»j)4
B (t{n)ing’ %)

From (12) it foliows that [E(ng°+ ;= ngko+j)2]2 < 3%q*9-D and

E(ngo+J _ EngOH); < 3tgii-b
therefore

" Bt ii
P{lgkoﬂ — Bgwyyl > 54 } s 1A (mut

Ifj < ja, t,(n) = p3¥* and since j, < const-log(p,), we have

In—-1 .

% X -const logp
P{| g > ug 1 < < const- -

121 {|gko+j| pg’ 1 < IR = PR

Ifj > jn, t{n) < p3%*; therefore, 2¥o*7 > const-pi/* and hence from (11) it
follows that

k(n) Kk, k) =Ko

Q0 -
D Pl > ug < D ) exp(— 2%+ %)

i=7ip i=Jn

< k(n)p3¥* exp(—const - pi2'%)
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=

Z [consstd;o% L k(n)p24* exp(~— const - p;2’4)] < 400
n

Thus, we obtain

5

k(n) ~kq

’vo+:i

i=1

since k(n) < const-log(p,), p.% > const-n.
This means that with probability 1 for only a finite number of numbers #,

k(n)—ko

(14)

_E
l—gq
By applying the strong law of large numbers we obtain with probability 1

that only for a finite number of numbers # the following relation is satisfied:
toln)

to(n) 2, iy = Efu,
Moreover, g, — 0 as n — co; therefore | g,| > p only for the finite number of
n with probability 1. Now, |EfWk0 — F| < p; hence, from (13)-(15) we finally
obtain: with probability 1 for all but finitely many =,

|fra = Fl < B+ 1A - @l

Hence, due to the arbitrary choice of u it follows that f, — F as n — oo with
probability 1. The theorem is thus proved.

n
8ko+5| >
j=1

> p (15)

3. THE PROOF OF THE THEOREM IN THE GENERAL CASE AND
SOME FURTHER CONSIDERATIONS

In the general case we cannot use the upper bounds which we obtained
from the condition of uniform boundedness of the random variables e(x, , x,).
To prove Lemma 2 we must perform an initial estimation of H(e(V'?), ¢(¥2))
for the case of adjacent V! and V2. This estimate comes from the following
Lemma.

Lemma b

P{ > lelx, xa| > %E(Vl, ) 4+ a2 Jog 2}
X316V, x0€V2

< exp[ e D(v4, V2)]
where
Dy, v = > de(x;, X3

X1€VE,X0eV2
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The proof of Lemma 5 is analogous to that of Bernstein’s inequality.
In the general case the existence of moments for the random variables
fv is not obvious. Under our conditions f;, has moments of all orders.

Lemma 6
|Efy] < VCo|V|
E(fy — Efy)?* < 3| V|02 -2C,F(2k)!, k=12,..

The proof of Lemma 6 is analogous to that of Lemma 2.2 in Ref. 5,
taking into account the conditions ITa and IIib of the theorem.

From this Lemma we obtain the estimates (11) and (12). After this the
proof of the theorem is analogous to the nroof given before.

The problem we considered can be extended to an even more general case.
Let the spin variables take values on a compact subset M of space R". The
Hamiltonian is determined by the binary potential ®: M x M — R! and is
given by

(X1, X)) P(@(x1), ¢(x2))
lxl — lead

1
H='2'

X1 #Xg
The potential ® is assumed to be symmetric, i.e., ®(p;, ;) = Dlps, 1),
Yo;, ¢, € M. Let a probability measure dy be given on M. Then the free
energy is defined in a finite volume V by

fo= 285 By = | expl—HpV ) " otV)

where dy'Vl is the direct product of the measure dy taken |V| times. The
theorem also holds if the potential @ satisfies Golder’s condition with an
arbitrary positive exponent, i.e., if there exists # > 0 and a constant C; > 0
such that |®(py, @2) — (e, 92") < Collpr — @] + lp2 — @'Y, You, @,
<p1,> "PZI e M.

In conclusion we note that in this problem we are concerned with free
energy in a finite volume with empty boundary conditions. If « > 1/2, we
can consider the existence of free energy with arbitrary boundary conditions.
Let V be a finite volume and let (Z%\ V) be the spin configuration outside V.

The energy of the configuration ¢(¥) with the boundary conditions
o(Z°\V) is defined by

H@(M)|p@\V)) =% S E(xll’x xﬂ_q»(;cll)z(xz)
gl 1o
+ (x1, Xo)p(x1)p(xz)

X1€V xoezd\V le - x2!ad
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It is easily seen that, if « > 1/2, the second sum converges with probability 1
and H(e(V)e(Z4\V)) is definite. We can now define the free energy in a
volume ¥V with the boundary conditions e(Z*\¥) by

_ log B(V|p(Z\V))
fV;w(Zd\V) = iV|

E(V |p(ZA\V)) = ;) exp] — Hp(M)|p(Z4\ V)]

The random variables fy, ,,za\v,, can be easily shown to converge to F with
probability 1 for any sequence of extending parallelepipeds that tend to in-
finity in the sense of Fisher and for any arbitrary sequence of the boundary
conditions g, (Z4V,,).

Note. The condition « > 1/2 is essential. One can show that for « < 1/2
the free energy of the systems under consideration does not exist, because
Jv, = +00 as n— oo with probability 1.
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