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Classical lattice systems with random Hamiltonians 

l =g=2 ~(x~ , x2)q~(x~)~(x2)]x.~ ~ x _ ~  

are considered, where d is the dimension, and e(xl, x2) are independent 
random variables for different pairs (xl, x2), Ee(xl, x2) = 0. It is shown 
that the free energy for such a system exists with probability 1 and does not 
depend on the boundary conditions, provided ~ > 1/2. 

KEY WORDS: Random interactions; random variables; long range; free 
energy; Hamiltonian; spin system; partial function. 

1. INTRODUCTION 

The anomalous magnetic properties of some metallic alloys, the so-called 
spin-glasses, are known to be due to the Ruderman-Kittel-Kasuya-Yosida 
(RKKY) spin-spin interaction of impurity at.ores. (1~ This can be given by the 
formula 

J ( l x l  - x2l)~o(xl)~(x2) 

where q~(xl) and ~o(x2) are the spins of impurity atoms, and J ( r ) =  
(kFr-a) cos(2kFr), where kv is the Fermi momentum. 

The R KKY interaction is long-ranged and rapidly oscillating. In order 
to investigate it we usually consider models with random Hamiltonians, such 
as those in which J(Ixl - x2[) is assumed to be random and statistically 
independent for various pairs xl ,  x2. ~2,3~ Similarly, a lattice model can be 
used with the Hamiltonian 

1 ~ r x2)q~(xl)~o(x2) 
H (1) 

z .  lx~ - x21 ~ ~1 ~ X2 
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where e(xl, x2) is random and d is the dimension of the model. The param- 
eter a characterizes the power of the long-range interaction. The main 
problem we treat here is the existence of the free energy for such systems. 
For  a > 1 the answer is in the affirmative. (~'5> In this paper we shall consider 
values of  a ~< 1. 

In the case of  nonrandom Hamiltonians the free energy may not exist 
for such systems. For example, in the ferromagnetic case the energy of the 
ground state increases more rapidly than the volume. However, in the pres- 
ence of random interactions all effective interactions decrease. Consequently, 
the free energy exists and is independent of  E(xl, x2) with probability 1. 

We assume that x e •a and that ~(x), the spin variable at the point x, / 
takes the values + 1. Let V be a finite subset of  7/a. The Hamiltonian H in 
the volume V is given by the expression 

1 ~ E(xl, x2)~(xl)~(x2) 
H(q~( V)) 

x l ~ v  Ix, - x~l ~ 
X l  ~ x 2 

where q~(V) denotes the spin configuration in V, and e(xz, x2) is a set of  
independent random variables with a zero mean value defined in the prob- 
ability space (f~, e, P). They are assumed to be translation-invariant, i.e., 

~(xl + x, x2 + x) 

has the same distribution for all x ~ 7/a. For a given realization of the random 
variables w = {e(x~, x2), x~, x2 ~ 7/a} E f~, the free energy in the volume V is 
defined as follows: 

1 fv(~) = ~ log ~(V), E(V) = ~(v> ~ exp[-H(w(V))]  

where the summation is taken over all the configurations ~o(V) in the volume 
V, and IV[ is the cardinality of  V. 

For  the sets V we shall choose parellelepipeds tending to infinity in the 
sense of Fisher. (6) Note that "tending to infinity in the sense of  Fisher" 
means that, if a~, a2,..., aa are the edges of  the parallelepipeds and p is its 

diameter, then 

adp > const > 0, i =  1 ..... d as V---~oe 

The main result of  this paper is the following theorem. 

T h e o r e m .  Suppose the following conditions are fulfilled: 

I. c~> 112. 
IIa. The random variables e(x~, x2) have moments  of  an arbitrary order, 

and there exists a constant b such that for all integers k 1> 2 

[E(~(x~, x~))l ~ �89 x~)b ~-~. I,!, Vx~, x~ e 7z~ 
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where d(x~, x2) is the variance of e(xl, x2), and E( . )  is the averaging over the 
measure P. 

IIb.  The variances d(x~, x2) are uniformly bounded by some constants 
C1 and (22 so that 

0 < C~ <. d(xl,  x2) <. C2 

Then, for any extending sequence of parallelepipeds which tends to 
infinity in the sense of Fisher, fv,(~o) converges to a nonrandom limit with 
P-probabili ty 1. The limit is independent of  the sequence V, and is equal to 
the limit of  E(fv,(oJ)). 

To prove this theorem we use Bernstein's inequality for probabilities of  
large deviations. (7,8) Let ~ ,  i = 1, 2,..., be independent random variables 
with the zero mean value satisfying condition I Ia  of the theorem. Let d~ be 

the variance of ~7~, D,  = dz + ... + d,. Let 0 < t < ~/D--~/2b; then 

P /> 2tV / < e x p ( - t  2) 

P ~< - 2 t  < e x p ( - t  2) 

2. P R O O F  FOR L I M I T E D  r x2) 

Now we prove the theorem for limited E(xl, x2). Suppose the random 
variables are uniformly bounded, i.e., there exists a constant C > 0 such that 
IE(xl, x~)] ~< C with probability 1. 

Consider two equal nonoverlapping cubes V 1 and V 2 in the lattice 2[ a 
with edge of size a. Let z ~ and z ~ be the centers of the cubes V 1 and V 2, 
respectively. 

The energy of the interaction between V ~ and V 2 is given by the ex- 
pression 

I-I(~(v~), 9,(v~)) = ~, ~(x~, x2)~(xl)~(x~) 
xl~vl,~v~ [xl - x2[ ~a 

For  given q~(V ~) and ~o(V2), H(~o(V1), q~(VZ)) depends on ~(xz, x2) and is a 
random variable. 

Lemma q. Let dist(V ~, V 2) /> const.a.  Then for any 3, 0 < 3 < 1/2 
and for all sufficiently large a we have 

P{,o ~ ~:  IH(~0(V1), w(V~))l /> a(3/~+O~allz~ - z ~ [ %  

at least for one pair ~o(VZ), ~(V2)} 

~< e x p ( -  a (1 + o)a) (2) 
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Proof of Lemma 1. Let us fix the configurations ~o(V z) and ~o(V 2) and 
define the random variables 

Then 

w(x~, x=) = ~(x~, x=)w(x~)~(x=)l ~ - z=l~"lix~ - x=l ~ 

1 
H(~( w~), ~( w~)) - iz 1 _ z~[~ ~ ~ ~(x~= x~) 

xl~Vl ,x2eV 2 

From condition IIa of the theorem it follows that the random variables 
n(x~, x2) satisfy the conditions of Bernstein's inequality with the constant 
B ( V  1, V 2) = const.b. Let 

D ( W ,  V ~) = ~ a~(x~,x~) 
XI~Vl,x26V 2 

where drl(xz, x2) is the variance of~(x~, x2). Obviously, const, a 2a <~ D( V 1, V s) 
~< const, a 2a. Suppose t = a (3/2 + o)a/2[D(V1, Vz)] 1/2; then 

t < [D(V ~, V2)]~/2/ZB(V ~, V 2) 

for all 0 < 3 < 1/2 and for sufficiently large a. Therefore, from Bernstein's 
inequality we have: 

The general number of configuration pairs ~(V~), q~(V z) is equal to 2 Iv~l + Iv~l; 
hence, the left-hand side of inequality (2) does not exceed 2 2~. 2 e x p ( - t  2) < 
e x p ( - a  (~ + 0)a) for sufficiently large a. The Lemma is proven. 

Remark. It is not essential that V ~ and V 2 be equal cubes. Lemma 1 and 
two subsequent Lemmas also hold in the case where V ~ and V 2 are parallele- 
pipeds with edges differing by a constant factor. We shall use this remark 
below. 

Now we estimate H(~o(VZ), q~(V2)) when V ~ and V 2 are equal adjacent 
cubes. In Lemma 2 the distance between V ~ and V 2 is not stipulated, although 
we shall use it in the case in which V ~ and V 2 have a common face. 

k e m m a  2. There exist Z, ~- > 0 such that for all sufficiently large a 

P{]H(q~(V1), ~0(V~))] /> a (~-~)a, at least for one pair q)(V~), ~0(V2)} 

~< e x p ( - a  ~) (3) 

Proof  of  l_omma 2. The proof of Lemma 2 is based on the following 
inductive statement. Suppose for some s~, ~-~ > 0 that it has been proven for 
all sufficiently large a that 
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P{IH(rp(V1), ~(V2))] 1> aS1 a, at least for  one pair 9~(V1), q~(V2)} 

~< e x p ( -  aU) (4) 

Let us fix 3, 0 < 3 < 1/2; then for  

and some ~'2 > 0 a similar estimate is valid for  all sufficiently large a: 

P{]H(~(VZ), q~(V2))[ >1 const-aS~ a, at least for  one pair  ~(V~), ~(V2)} 

~< e x p ( - a  ~) (5) 

N o w  we prove this statement. Subdivide V ~ and V 2 into smaller cubes with 
edge a z o f  the order of  a", 0 ~< u ~< 1. For  example, we can take a ~ = [a"], 
where [a"] is all o f  a u. The V 1 and V 2 are no t ' t o  be subdivided evenly into 
such cubes. Near  the boundary  there may appear  parallelepipeds with smaller 
edges. These are included into the next subdivision. In  this way V 1 and V 2 
are subdivided into cubes with edge a z and parallelepipeds adjacent to the 
boundary  with edges a~, a z ~< a~ < 2a ~, i = 1 ..... d. Let us denote the elements 
o f  the subdivisions o f  V ~ and V 2 by V~ z and Vj 2. Then, 

= 

The number  o f  the adjacent pairs V~ 1, Vfl does not  exceed const.  (a/aZ) a-1. 
We use the estimate (4) for these parallelepipeds and apply Lemma 1 to the 
other  pairs V, ~, ViL We then have 

t "  

P ~ a t  least for  one pair ~o(VZ), ~(V2): 

]H(~o(V~), go(V~'))l >/const .(al)~l  a ~ + ~ [zi ~ - Zs2i~a 

< 

Here z~ ~ and zs 2 denote the centers o f  V~ 1 and Vs 2. Then 

1 <~ const  [ a ] (2- =)a X;" 

Iz,  -z,21 \ y !  
Since a ~ = [a"], then under  the cond i t i on  o f  u =~ 0 we obta in  fo r  suff ic ient ly 
large a and some T(u) > 0 the following: 

P{at least for  one pair  ~o(V~), ~o(V2): ]H(~o(V~), ~o(V~))] 

/> const .  (at~ " + ~1 - ~')(~ - ~a)~a + at~as~ - ~, + ~),, + (~ - , ~  - ~,)~)} ~< exp( - a '(u~) 
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By taking a u that  minimizes the expression max(s~u + (1 - u)(1 - l /d) ,  
(_~ 2 - ~ + 3)u + (2 - a)(l  - u)} and noting tha t  this u r 0, we obtain the 
inequality (5). 

As the first est imate the rough upper  bound  is taken:  

V~(Vi), ~0(V2), IH(ep(V1), go(V2))l ~ cons t . a  (2-~)a 

Then,  by using the inductive s ta tement  in a finite number  of  steps we obtain  
the inequality (5) for  any s2 > max{{ - ~ + 3, 1 - 1/d}. Ifc~ > 1/2, we can 
choose 3 so small that  ({ - ~ + 3) < 1 ; therefore max{{ - ~ + 3, 1 - lid} 
will be less than  unity, which proves L e m m a  2. 

k e m m a  3. For  any Vl > 0 and some ~(Vl) > 0, e{ lg(w(Vl ) ) l  >I a (1 +,1>~ 
at  least for  one q~(V~)} ~< exp(-a~(Yl)), for  sufficiently large a. 

The  p roo f  of  L e m m a  3 is analogous to the p roo f  of  L e m m a  2 and is not  
presented here. 

Let  Wk be a cube with edge 2 k on the lattice 7/a. I t  can be subdivided 
into 2 a cubes with edge 2 ~-1. Denote  these cubes by W~- I ,  ~ = 1, 2 ..... 2 a. 
Define the r a n d o m  variable gw~ by the equality 

1 ~. fw~_~ 

Then  the following L e m m a  holds. 

k a m m a  4. There exists ~'z, ~'2 > 0 such that  for  sufficiently large k 

P{]gw;I >1 1/27~y~} ~< e x p ( - 2 ~ )  (6) 

Proof of Lemma 4 

H(~o(W~)) ---- ,=1 ~ H(cp(W~_l)) -t- ~ j  H(cp(W~_l), ~o(W~_l) ) (7) 

Applying  L e m m a  2, we have for  some 72, r2 > 0 

P{at least for  one ~(Wk), max[H(~o(W~_l), ~0(W~_l))l /> 2 k(1-~=)a} 

~< e x p ( -  2k'2) (8) 

for  sufficiently large k. F r o m  (7) and (8) we obtain  

P - ~ ~'~ fwL_x >/ ~ j  ~< exp(-2k.2)  
i=1 

and L e m m a  4 is proved.  

F r o m  L e m m a  4 it follows that  for  sufficiently large k, IE(gw~)[ < 2/2 y2e, 
since [gw~l does not  exceed a certain power  of  the volume of  W~ with prob-  
ability 1. The  fw~_l,  i = 1, 2,..., 2 a are independent,  identically distributed 
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random variables; therefore, ]Efwz - Efw~_x] = ]Egwk[ < 2/2 ~2z. Hence, 
there exists a limit Efwz as k --+ ~ .  Denote this limit by F, F = limk_. ~ Efwz. 
We shall prove that for an initial sequence of parallelepipeds V,, fv,  ---> F as 
n -+ m with probability 1. 

Consider a squence of subdivisions ~:k of  the lattice 71d into cubes with 
edges 2 ~, k = 1, 2,..., coordinated so that the point 0 ~ Z d is the vertex of 
these subdivisions for all k. 

Let p ,  = diam(V,). Choose k(n) to satisfy the condition 2 k("~ ~< p Z < 
2 ~("~+~, 0 < I < 1. The parameter  l depending on a is defined below, fk(,> 
subdivides V, into cubes with the edge 2 z("> and into parallelepipeds of  
smaller edges adjacent to the boundary of V,. Similarly, Lemma 2 unites 
these parallelepipeds with the neighboring cubes, so that we obtain a sub- 
division of V~ into cubes with edge 2 kr"~, which we denote by Wg<,), i = 
1, 2,..., t(n), where t(n) is the number of  such cubes, and into parallelepipeds 
adjacent to the boundary whose edges are less than 2 z("~ + ~ and no less than 
2 a"~. We denote these elements of  the subdivision by W~ j, j = 1, 2,..., t '(n), 
where t'(n) is the number of  these parallelepipeds. Then we have 

t ( n )  . . .  t ' ( n )  

~ = I  5 = 1  Cd 

I 
+ ~2 ,~.H(q~(W/~(.,), q~(W~'<~)) + ~ ,~.,H(~(W,/), q~(W~')) (9) 

For  a sufficiently largep. ,  when Lemmas 1-3 can be applied to all the elements 
of  the subdivisions W~<.), W~ j, we obtain the following inequality with a 
probability exceeding 1 - e x p ( - p ~ ) ,  ~'3 > 0: 

~,s H(q~( W]~(,,)), q~(W,/)) 

1 , H( 0(W ;), i + ,~,  H(cp(W~(.)), ~o(W~.>)) + 

t~> H(q~(W,/)) <~ cons t .p?  ~:~>ap? l)(1 + Yi)/d 

i = 1  

where 3, y, and y~ are defined by Lemmas 1-3 and ~-a is dependent on 3, y, 
y~, and L 

By Lemmas 1 and 3 the parameters 3 and y can be taken as small as 
desired. Therefore, if a > 1/2, by choosing 3, y, and ! we find for some 
ya > 0 that the following inequality holds with a probability larger than 
1 - e x p ( - p ~ ) :  
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IH(~o(V,)) - ~_~ H(~o(W~(,~))[ < const-pk 1-~3~a (10) 
~=1  

Let us define the r a n d o m  variable g , :  

1 ~(") 
gn = fv ,  t(n) ~ fw~,,, 

~=1"= 

F r o m  (9) and (10) we obtain  P{[ g-I I> const/p~ 3a} ~< exp(-P~3)  �9 This means 
tha t  g ,  ~ 0 as n--+ ~ with probabi l i ty  1. Indeed, p a > const .n ,  since the 
sequence Vn is extending and by the Borel-Cantel l i  L e m m a  g ,  ~ 0 as n ~ 
with probabi l i ty  1. 

F r o m  L e m m a  4 and the consequences following f rom it, we have 
Efwk --> F as k --> ~ .  For  sufficiently large k 

P{lgw~l >1 1/2k~) < exp(-2k~2), ]Egw~] < 2/2 ~y2 (11) 

Fo r  an arbi t rary  tz > 0 one can chooseko  in such a way that  ]Efw~o - F[ < tz, 
2/2ko~ < /~/2, and for  all k >/ ko the inequalities (11) and the following ones 
hold:  

E(gw~ - Egw~) 2 < 32/22k~% E(gw~ - Egw,) ~ < 3~/2 '~r~ (12) 

Fo r  sufficiently large p . ,  such that  k(n) > ko, the cubes W~<,> are subdivided 
into cubes with edge 2 ~<">-1 - W~,>_~, i = 1, 2,..., 2dt(n), then into cubes 
with edge 2 k<"~-2 - W~r i = 1, 2 ..... 22a, and so forth,  until a sub- 
division into cubes with edge 2~o - W~o , i = 1, 2 ..... 2a<~r occurs. 
Write t~(n) = t(n)2r -~>a. By applying L e m m a  4 we obtain  

1 to(n) 

iv .  = i~(n) ~ f ~ o  + g~o+~ + "'" + g~-~ + g- (13) 
i = l  

where 

1 ~ ~ 
= gwlr +J, j = 1, 2 ..... k(n) - ko g~o+J t ~  ,~ 

Note  tha t  the gw~,o +j, i = 1, 2 , . . . ,  t~(n) are independent ,  identically distributed 

r a n d o m  variables. 
F o r  a n y q ,  0 < q <  1 

P ~'--~1 gko+y > ~ <  ,=1 ~ P{Ig~o+Jl > /~q ' - l )  

Choose j~ satisfying the condit ion 

tj(n) >>. pZa/~ if  j < j ' .  and tj~(n) < p~a/4 
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Then 

k ( n )  - k 0 .i n - 1 

e{Ig~o+.il > t~q .i-~} = ~ P{lg~o+y] > tzq j - l}  
j = l  j = l  

k(u)-/~ o 

J = J n  

Let q = 2 -  y2, where y2 is defined by Lemma 4. F rom the conditions imposed 
on ko it follows that [Egw~o +jl < -lzt~q.i- ~; therefore 

.in - 1 .in -- 1 

P{lgko+~] > ~q.i-1} ~< ~ P{lg~o+.i - Egw~o+jl > �89 .i-1} 
i=i y=l .  

By using Chebychev's inequality we obtain 

P{lg~o+.i - Egw~o+,] > �89 

e(g o§ 
~< (�89 04 

_ E ( .  1 t~) _ ~ , 

3t.i(n)[t.i(n) - 1][E(gw~o+, - EgW~o+)2] 2 + t . i(n)e(g~o+ , - E g ~ o + , )  ~ 

= (t/n)�89 

From (12) it follows that [E(gw~ ~ .j  - Egwko+)2] 2 < 3~q ~<j- 1)and 

E ~ 3~q4(.i- 1) E(gw~o+j-  gw%+) < 

therefore } " 3 .6  * 
P [g~o+J - Egw~o+,] > ; q j - 1  <~ ti2(n)t z~ 

I f j  < j~, t /n)  >1 p~a/4 and s ince j ,  < const . log(p,) ,  we have 

J n -  1 
P{[ g~o + J[ > /zq j -  1} ~< J~" const log p~ 

p~a/2tz---------- W ~< const p~a/2tz~ 
i = 1  

I f j  > / • ,  t / n ) <  paa/4; therefore, 2co § > const.p~/4 and hence from (11) it 
follows that  

k(n) - k o k ( n )  - tco 

P{lg~o+Jl > / z q  j - l}  ~< ~ t j (n)exp(-2%+J)~) 
i f  i n  Y = Y n  

<~ k(n)p~ a/~ exp( -cons t . pp /4 )  
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Thus, we obtain 

~ P g~o+J > 
1 = 1  

[ [const.log p~ paa12~ ] <~ ~ + k(n)p~ a:4 exp(-const .p~ =/4) < +oo 

since k(n) <~ const.log(p,), p a >/ const.n. 
This means that with probability 1 for only a finite number of numbers n, 

kc~)-~~ g~o+: ~ > /~ (14) J'=i 1 - q  

By applying the strong law of large numbers we obtain with probability 1 
that only for a finite number of numbers n the following relation is satisfied: 

1 t~ 

Moreover, g,  ~ 0 as n -+ oo; therefore ]g=[ > t~ only for the finite number of 
n with probability 1. Now, IEfwko -- F I < t~; hence, from (13)-(15) we finally 

obtain: with probability 1 for all but finitely many n, 

Ifv. - F[ < [3 + 1/(1 - q)]t~ 

Hence, due to the arbitrary choice of/z it follows thatfv,  --> F as n -+ oo with 
probability 1. The theorem is thus proved. 

3. THE PROOF OF THE T H E O R E M  IN THE GENERAL CASE A N D  
S O M E  FURTHER C O N S I D E R A T I O N S  

In the general case we cannot use the upper bounds which we obtained 
from the condition of uniform boundedness of the random variables ~(xl, x2). 
To prove Lemma 2 we must perform an initial estimation of H(go(V1), ~o(V2)) 
for the case of adjacent V 1 and V 2. This estimate comes from the following 
Lemma. 

kemma 5 

P ~ ~ / ) (  V1 , a2a2b log 2} ( x:vl,x:v  I , ( x l ,  > + 

< exp[-~b2/9(V 1, V2)] 

where 

= 

XleVl ,x2eV 2 
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The proof  of  Lemma 5 is analogous to that of  Bernstein's inequality. 
In the general case the existence of moments for the random variables 

fv  is not obvious. Under our conditions fv  has moments of  all orders. 

k e m m a  6 

IEAI v l  

E(fv  - Efv) 2~ <~ �89 Vlkb2~-2C2~(2k)!, k = 1, 2,... 

The proof  of  Lemma 6 is analogous to that of Lemma 2.2 in Ref. 5, 
taking into account the conditions IIa and IIb of the theorem. 

From this Lemma we obtain the estimates (11) and (12). After this the 
proof  of  the theorem is analogous to the proof  given before. 

The problem we considered can be extended to an even more general case. 
Let the spin variables take values on a compact subset M of space R v. The 
Hamiltonian is determined by the binary potential O: M •  M--+ ~1 and is 
given by 

1 v , ( x l ,   o(x2)) 
H 

-2 lxl  - 

The potential �9 is assumed to be symmetric, i.e., ~(~ol, ~o2) = qb(~%, ~0~), 
V~ol, ~% ~ M. Let a probability me~,~dre dx be given on M. Then the free 
energy is defined in a finite volume V by 

log E(V). f , ,  f v  = IV I , E(V) = -...Y exp[-H(~o(V))] dxlVt(~o(V)) 

where dx IvJ is the direct product of the measure dx taken IV] times. The 
theorem also holds if the potential 0) satisfies Golder's condition with an 
arbitrary positive exponent, i.e., if there exists 0 > 0 and a constant C3 > 0 
such that [O(q~, cp2) - qb(~ol', ~%') ~< C8(1~o~ - ~o1'1 + 192 - cP2']) ~ Vq~, ~%, 
~o1', ~%' ~ M. 

In conclusion we note that in this problem we are concerned with free 
energy in a finite volume with empty boundary conditions. If  c~ > 1/2, we 
can consider the existence of free energy with arbitrary boundary conditions. 
Let V be a finite volume and let q~(7/d/V ) be the spin configuration outside V. 

The energy of the configuration q~(V) with the boundary conditions 
rp(7/e\V) is defined by 

1 ~ ~(xl, x2)cp(x~)cp(x2) 
n(~'~ = 2 ~,  ~v ]xl - x21 "a 

X 1 -'it, x 2 

+ 
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I t  is easily seen that, if c~ > 1/2, the second sum converges with probability 1 
and H(q~(V)I~o(-s is definite. We can now define the free energy in a 
volume V with the boundary conditions ~0(7/a\ V) by 

fv~(~\v)  = log E(VIcp(Zal V)) 
IVl 

E(Vlq~(?7a I V)) : ~ exp[ - H(~o(V) Iq~(Zal V)] 
<o(V) 

The random variables fv,.~,(2z,\v=~ can be easily shown to converge to F with 
probability 1 for any sequence of  extending parallelepipeds that tend to in- 
finity in the sense of Fisher and for any arbitrary sequence of the boundary 
conditions ~o,(2[a/V,). 

Note .  The condition a > 1/2 is essential. One can show that for ~ < 1/2 
the free energy of the systems under consideration does not exist, because 
_Iv, -+ + oo as n -+ oo with probability 1. 
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